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Introduction
Globally, stroke continues to be one of the leading causes of 
mortality and accounts for nearly 12% of total deaths every year 
[1-3]. It constitutes the leading cause of long term disability with 
up to 40% of stroke sufferers not recovering their independence 
and is one of the leading causes of disease burden when measured 
in disability adjusted life years [2,4]. Stroke also continues to be 
one of the most expensive conditions in that it costs National 
Health System £9 billion per annum in the UK alone [5].

There are two main types of stroke; ischaemic and haemorrhagic. 
The former constitutes about 85% of all strokes and can be 
further divided into two main subtypes; thrombotic and embolic 
strokes. Thrombotic strokes occur when a thrombus, formed in an 
atherosclerotic artery, occludes the blood flow to the distal part 
of this artery. This is usually preceded by a transient ischaemic 
attack or mini-stroke [6]. Embolic ischaemic strokes, on the other 
hand, usually arise when a blood clot breaks loose (embolus) and 
travels to a part of the cerebral vasculature that is too small to 
let it pass thereby significantly minimising or blocking the blood 
supply to the brain region supplied by this artery. In most cases 
the root-cause is cardioembolic [7].

Hypothermia: a Therapeutic Option in 
Management of Stroke?
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Haemorrhagic strokes occur when cerebral blood vessels 
leading to or within the brain are ruptured or leak. Naturally, 
the damage from a haemorrhagic stroke are often more severe 
than ischaemic stroke. Moreover, haemorrhagic strokes have 
a higher risk of mortality than ischaemic strokes in the first 3 
months. Similar to ischaemic strokes, there are two main types 
of haemorrhagic strokes which are determined by the location 
of the ruptured cerebral artery i.e. deep within the brain 
parenchyma (intracerebral haemorrhage) or on the surface of 
brain (subarachnoid haemorrhage) [8,9]. Since thrombolysis 
would increase the risk of further bleeding, it is contraindicated 
in the treatment of haemorrhagic stroke. Hence, the focus of 
medical treatment remains on gradual lowering of the blood 
pressure and intracranial pressure [9]. 

Current Treatment
To date, thrombolysis with recombinant tissue-plasminogen 
activator (r-tPA) remains as the only medical treatment option for 
ischaemic stroke. This thrombolytic agent converts the precursor 
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plasminogen into its active form, plasmin which degrades the 
fibrin that make up blood clots, leading to reperfusion of the 
ischaemic zone created by vascular occlusion [10-12]. However, 
r-tPA can only be given safely within the first 4.5 h of an ischaemic 
attack [12,13], hence many patients do not receive this treatment. 
Indeed, an audit by the Royal College of Physicians report that 
only 11.5% of all stroke patients between July 2014 and June 
2015 were thrombolysed. The small time window for r-tPA 
administration, limited availability of stroke specialist centres due 
to resource constraints, shortage of specialised stroke physicians 
and the risk of haemorrhagic transformation may somewhat 
explain this [14,15]. Taken together, these findings indicate an 
obvious need for new therapies that may potentially mitigate the 
deleterious effects of debilitating condition [16,17]. 

Therapeutic Hypothermia
Due to its neuroprotective properties, hypothermia has long 
been considered as an important therapeutic strategy in the 
management of patients with hypoxic brain injury after cardiac 
arrest and in children with hypoxic-ischaemic encephalopathy 
[18]. Therapeutic hypothermia, defined as a core body 
temperature below 35oC, has later been shown to improve 
neurological integrity in cases of traumatic brain and spinal 
cord injuries [19]. Post-ischaemic suppression of a series of 
molecular and cellular mechanisms including oxidative stress, 
inflammation, neuroexcitotoxicity, blood-brain barrier disruption 
and apoptosis may account for the protective effects of 
therapeutic hypothermia in the central nervous system [20]. The 
specific mechanisms by which hypothermia may regulate these 
specific pathways have been the focus of a recent review paper 
[21]. However, the efficacy of hypothermia in the treatment of 
stroke has so far mainly been confined to various laboratory 
studies and pre-clinical trials. At present, there is not strong, 
clear evidence for the routine use of therapeutic hypothermia 
in clinical settings, indicating an urgent need for multi-centred, 
controlled, randomised clinical trials to test its safety, efficacy and 
feasibility in large number of stroke patients. These trials would 
undoubtedly be of great help in ascertaining a standard protocol 
for delivery of this therapy [22,23]. The evidence currently known 
about the optimal conditions will be outlined below. 

Time of Onset
Currently there is not an optimum window of time in which 
therapeutic hypothermia is recommended. However, as the 
process of ischaemia and reperfusion occurs over a specific 
time course there must be a time-dependant window in which 
this treatment may be more effective. Although animal studies 
reveal the benefits of implementing hypothermic therapy 
at the onset of ischaemic injury, this may not be possible in 
clinical settings [24]. However, other animal studies have shown 
the therapeutic value of extending hypothermic treatment in 
cases where the cooling was started during the early phases of 
reperfusion [25,26]. A systematic review investigating the efficacy 
of therapeutic hypothermia in the treatment of animal models of 
ischaemic stroke has concluded that efficacy was highest when 
treatment was initiated “before or during the onset of ischaemia, 
in temporary rather than permanent ischaemia models”. 

However the paper has also reported that there is not a clear 
time dependency after the onset of ischaemia and even with a 
delay in the initiation of treatment (between 90-180 minutes), 
there was about 37% reduction in infarct size [27]. Taken together, 
these findings necessitate the establishment of a therapeutic 
time window and suggest that caution needs to be taken when 
interpreting the results as there is an inverse correlation between 
study quality and the impact of hypothermia. 

Optimal Temperature
Temperatures below 31oC have shown the highest efficacy in 
reducing infarct size, implying that the lower the temperature, 
the better the neuroprotection and outcome. Even so, significant 
reductions in infarct size (30%) has also been obtained with mild 
hypothermia, 35oC [27]. Interestingly, animal studies focusing on 
the correlation between variations in temperature and infarct 
size reveal conflicting results e.g. while one study demonstrating 
a direct relationship between the level of decrease in brain 
temperature and the severity of subsequent ischaemic damage, 
another study showed better outcome with milder hypothermia. 
In the former study, 60% reduction in infarct size was observed 
in male spontaneously hypertensive rats subjected to transient 
middle cerebral artery occlusion (tMCAO) and had their brain 
temperature cooled to 34oC. Further reduction of temperature 
to 29oC in these animals led to eradication of all visible infarcts 
[28]. In the latter study, 3 hour exposure of rats to 32oC two 
hours after MCA occlusion produced a greater efficacy and 
tolerance than post-ischaemic cooling to 27oC [29]. In general, 
few studies support the application of temperatures below 32oC 
due to appearance of severe complications like arrhythmias, 
hypokalaemia and infections [16].

The current guidelines for a neuroprotective target temperature 
in patients with a return of circulation after cardiac arrest 
are 32-34oC, this may also be a feasible target in patients with 
ischaemic stroke [30]. Using tMCAO rat models a recent study has 
systematically compared the most effective target temperature 
for hypothermia in relation to both long and short term functional 
outcome where 6 different study groups were maintained at an 
integer between 37 and 32oC. The cooling occurred over 4 hours, 
90 minutes after middle cerebral artery occlusion. After 24 hours 
functional outcome was highest in the 33 and 34oC group compared 
to other temperatures, with the greatest functional outcome in 
the 34oC group. This U-shaped curve was also apparent when 
looking at infarct size and oedema formation which was smallest 
in the 33-34oC groups, these effects persisted to the endpoint 
at 5 days. It was concluded from these results that the optimal 
depth of therapeutic hypothermia in tMCAO rats should be 34oC 
[31]. An effective range of 33-35oC, classed as mild to moderate 
hypothermia, is therefore recommended. Nevertheless, further 
studies investigating the optimal temperature depth after focal 
ischaemia are required [16,32].

Duration of Cooling
Similar to the time window for hypothermia, the optimal 
duration of therapeutic hypothermia is also unknown [16]. 
Intriguingly, van der Worp et al have reported an inverse 
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relationship between the duration of hypothermia and effect size 
in animal models. Considering that neurovascular damage after 
an acute ischaemic attack occurs over hours to days, it is assumed 
that a longer duration of hypothermia may lead to markedly 
improved outcomes [33,34]. In support of this hypothesis, some 
experiments have already demonstrated better outcomes with 
the longer duration of cooling. For instance, exposure of patients 
with traumatic brain injury to long-term mild hypothermia, i.e. 5 
days, was more effective in improving outcome compared to short-
term treatments with mild hypothermia (2 days). Taken together 
with the time course for pathological events after ischaemic 
stroke, these findings may strengthen the case for treatments 
with longer periods of hypothermia [35,36]. Furthermore, 
greater infarct size reduction and better outcomes were found 
in Sprague-Dawley rats subjected to tMCAO and treated with 
longer (21 hours) versus shorter (3 hours) periods of hypothermia 
[37]. In this regard, a separate study concludes that treatment of 
rodents with longer periods of hypothermia (>4 hours) during an 
ischaemic attack was more effective in neutralising hippocampal 
cellular damage than those with shorter periods of hypothermia 
i.e. 2 hours [38]. As mentioned above, the length of time prior to 
initiation of hypothermic treatment and the duration of cooling 
afterwards appear to be interdependent in that when there is a 
longer time to onset of treatment, a longer duration of cooling 
is required whilst with shorter delays in treatment, a smaller 
cooling duration appears to be adequate [16,24,39-41].

Clinical trials investigating the use of mild hypothermia for 
cardiac arrest indicate that the treatment is more efficacious 
when maintained for 12 to 24 hours, hence the National Institute 
for Health and Care Excellence (NICE) guidelines recommend 12-
24 hours application of hypothermia [30,42,43]. This time frame 
may be a good indicator of a potential target in ischaemic stroke 
patients. Kallmunzer and Kollmar suggest the use of a surrogate 
parameter, like an MRI scan or measurement of a serum biomarker 
revealing the extent of neuronal damage, to determine the target 
temperature or duration of hypothermia [32]. 

Duration of Rewarming 
The optimal rewarming rate for hypothermia in stroke 
management is yet to be established. A tMCAO animal study 
looking at rewarming rates in rats after treatments with 
hypothermia found that the animals had longer rewarming 
period (over 2 hours) had a smaller total infarct volume than 
those had faster rewarming, about 20 minutes. Even so, 
neurological outcome assessed using a Neuroscore system 
looking at forelimb posture, grasping reflex and spontaneous 
movements appeared to be similar in both the rapidly and slowly 
rewarmed animals after 5 days compared to normothermic 
animals [44,45]. These findings were contradictory to those of a 
clinical study investigating the rewarming rate after hypothermic 
cardiopulmonary bypass which reported a greater cognitive 
outcome at 6 weeks in patients subjected to a slower rate of 
rewarming, defined by <2oC difference between nasopharyngeal 
and cardiopulmonary bypass perfusate temperature, compared 
to controls who had 4-6oC difference between nasopharyngeal 
and cardiopulmonary bypass perfusate temperature [46]. The 
argument for a slower rewarming period is also supported 

by studies looking into the importance of rewarming rate in 
hypothermic control of intracranial pressure or ICP [24,47,48]. 
In patients with massive hemispheric infarcts, the risk of a 
rebound rise in ICP was associated with a decreased rewarming 
duration (<16 hours). This rebound rise in ICP may be due to the 
hypermetabolic response causing a “rewarming shock” where 
there is sudden vasodilation to counter the insufficient cerebral 
blood flow mismatching with the increased metabolic demand 
during rewarming post hypothermia [49]. During rewarming, 
potassium levels should be monitored carefully as hyperkalaemia 
can occur due to the extracellular release of potassium that was 
sequestered intracellularly during hypothermia [50,51]. The 
rewarming process should be done with heated blankets and 
should not be faster than 0.5°C per hour to avoid temperature 
overshoot, with shivering and hypotension under control [52-
54]. Current recommendations suggest a rewarming period of 
between 6-24 hours, with 12 hours being potentially optimal to 
avoid any further complications of prolonged rewarming [16,48].

Hypothermia Combined with Reperfusion 
Therapy
Previous studies exploring the effectiveness of therapeutic 
hypothermia in temporary versus permanent rodent models of 
human ischaemic stroke have collectively shown the inability of 
hypothermia to reduce infarct volume in permanent models of 
MCAO compared to respective control groups while being effective 
in tMCAO models and reducing infarct volume by about 48% 
[24,55,56]. Taken together these studies suggest that therapeutic 
hypothermia may augment the efficacy of r-tPA to recanalise the 
occluded arteries. However, the interaction between the effects of 
hypothermia and thrombolytic pharmacotherapy is complicated 
in that hypothermia has been shown to evoke coagulopathies 
through a variety of mechanisms including platelet dysfunction 
and is therefore implicated in haemorrhagic transformation 
[22,57-59]. Contrary to this, another study examining the 
thrombolytic activity of r-tPA in the presence of hyperthermia has 
shown lower thrombolytic activity at cooler temperatures [60]. It 
is also possible that recanalisation may negate the cooling efforts 
of hypothermia by increasing blood flow to the reperfused area 
and accelerating the increase in temperature [22,59,60]. 

Despite failure of an early animal study to reveal any additional 
benefit of combining hypothermia with r-tPA over treatment 
with hypothermia alone in embolic stroke models, a subsequent 
study investigating the effects of combinatory therapy using MRI 
outcomes reported a trend towards better survival in rats that 
had undergone hypothermia with early or late (1 and 3 hours 
after thromboembolic occlusion, respectively) thrombolysis 
compared to those that had thrombolysis alone. Cerebral 
perfusion as viewed by perfusion weighted imaging was also 
shown to improve in animals subjected to combinatory therapy, 
proving that therapeutic hypothermia did not interfere with the 
enzymatic activity of intravenous r-tPA (alteplase). Even so, no 
significant difference was found in overall results between groups 
treated with r-tPA alone or in combination with hypothermia 
[61,62]. Feasibility and safety of combining hypothermia 
and thrombolysis in the treatment of ischaemic stroke were 
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demonstrated in The Intravenous Thrombolysis Plus Hypothermia 
for Acute Treatment of Ischaemic Stroke (ICTuS-L) trial which 
looked at the safety of treatment with hypothermia (33oC degree 
achieved by endovascular cooling) and intravenous r-tPA within 
6 hours of stroke symptom onset. Despite increased rates of 
pneumonia in the hypothermia versus normothermia group, this 
was neither associated with a poorer outcome nor an increased 
risk in bleeding [63]. As continuation of IcTuS-L study, the ICTuS 2/3 
studies investigate whether the combination of thrombolysis and 
hypothermia is superior to thrombolysis alone for the treatment 
of acute ischemic stroke and whether there is an increased risk 
of pneumonia in combinatory treatment group [64]. In addition 
to this, EuroHYP-1, a European multicentre, randomised, phase 
3 clinical trial aiming to reduce body temperature to 34-35oC 
within six-hours after symptom onset with rapid intravenous 
infusion of refrigerated normal saline or a surface cooling 
technique and maintained for 24 h is also currently underway to 
compare functional outcome in ischaemic stroke patients who 
undergo therapeutic hypothermia plus alteplase against patients 
who receive alteplase alone [65]. It is noteworthy that despite 
using different methods of cooling and target temperatures in 
both EuroHYP-1 and ICTuS trials, patients are also treated with 
pethidine and buspirone to prevent shivering and discomfort. 

Combining therapeutic hypothermia with caffeinol (caffeine plus 
ethanol) has also generated promising results in vivo. Indeed, an 
early study had shown that caffeine and 10% ethanol reduced the 
infarct volume in transient ischaemic rat models by about 83%. 
Delayed intravenous treatment of these animals with caffeinol (up 
to 120 minutes) after ischaemic onset also resulted in significant 
reductions in infarct size compared to the controls [66]. A follow 
up study then investigated the effects of caffeinol on infarct 
volume in the presence of hypothermia. For this, rodent MCAO 
models were exposed to 180 minutes of reversible ischaemia 
followed by 3 days of reperfusion. In conclusion, pairing caffeinol 
with therapeutic hypothermia resulted in statistically significant 
decreases in infarct volume when compared to the control (treated 
with saline fluid) or either single treatment groups [67]. In this 
context, a pilot study, with 20 patients, was performed to test the 
safety and feasibility of combining caffeinol and hypothermia with 
r-tPA. Of the 20 patients, 18 patients reached target temperature 
via endovascular or surface cooling methods and 3 died of causes 
unrelated to caffeinol administration. Although this study has 
concluded that combining caffeinol with hypothermia in acute 
ischaemic stroke patients received intravenous rt-PA is feasible, 
further prospective placebo-controlled randomised studies are 
required to explore safety and to test the efficacy of caffeinol 
and/or hypothermia [68]. 

Systematic Effects and Complications
Several complications and systematic effects of therapeutic 
hypothermia such as rebound hyperkalaemia during rewarming, 
unwanted shivering and the risk of haemorrhage have already 
been mentioned so far. In addition to these, other systematic 
effects including an increased risk of infection, cardiovascular, 
haematological and metabolic problems also need to be 
considered while administering hypothermic treatment. 

Shivering
Usually, shivering takes place when the core body temperature 
goes down to 30-35.5oC. Other than the discomfort it brings 
to patients, shivering can also negate the cooling effects of 
hypothermia by concurrently increasing vasocontractility 
and metabolic rate to increase heat production, implying a 
prerequisite for its clinical management during treatment with 
hypothermia [16,69]. Early detection remains a key factor in the 
prevention of shivering and ensuing irreversible physiological 
changes. To this end, the Bedside Shivering Assessment Scale has 
been developed which is a 4 point scale that rates shivering as 
absent, mild, moderate or severe and is assessed by inspection 
and palpation of different areas including the neck, thorax, 
arms and legs [70]. In clinical settings the intravenous opioid 
meperidine and orally administered buspirone are commonly 
used to suppress shivering without sedation or respiratory 
insufficiency. The combination of both drugs can successfully 
lower shivering threshold to 33.4oC [71]. In addition to this 
medical approach, skin surface rewarming may also be 
implemented to suppress shivering and vasoconstriction given 
that the cutaneous temperature constitutes around 20% of total 
thermoregulatory input in the body [72]. Meperidine and skin 
surface rewarming were found to act synergistically to reduce the 
shivering threshold to below 34oC with only mild sedation and 
no observed respiratory problems thereby indicating the efficacy 
of combining physical and pharmacological methods to control 
shivering and associated complications [73]. 

Cardiovascular and Haematological Ef-
fects
As core body temperature drops to 32oC, the heart rate also 
drops to around 40-45 beats per minute. This is a normal 
physiological response and does not require active intervention 
as ventricular filling time is longer, leading to a positive inotropic 
effect [17,74]. The risk of arrhythmia is not increased until core 
body temperature drops below 30oC. Indeed, no increases were 
reported in the frequency of arrhythmias at 33oC in comatose 
patients who had survived a cardiac arrest, supporting the 
notion that mild hypothermia would not adversely affect the risk 
of arrhythmias [69,75]. Research have shown that increases in 
mean arterial pressure during therapeutic hypothermia induce 
peripheral vasoconstriction which in turn increases venous 
return and triggers the release of atrial natriuretic peptide while 
supressing the release of anti-diuretic hormone. Naturally, these 
may lead to “cold diuresis” associated with hypovolaemia [76]. 

In addition to haemodynamic effects, hypothermia may also 
modulate a series of haemostatic changes that may promote 
coagulopathies. At temperatures below 35oC there may be a 
mild reduction in platelet count whilst below 33oC the synthesis 
of clotting enzymes and plasminogen activators are affected 
[50]. This could potentially increase the risk of haemorrhagic 
transformation in patients with ischaemic stroke [77]. Despite 
this the risk of bleeding is not a reason to withhold treatment 
with very mild hypothermia, as this does not affect coagulation 
more than normothermia even in patients with a high bleeding 
risk [20]. However, as at present there is limited information 
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as to how hypothermia may affect recanalisation rates, more 
investigation is needed to look at the haemostatic changes that 
occur during and after hypothermia.

Infections
A series of distinct pathways including attenuation of leucocyte 
migration and phagocytosis as well as an increased release 
of cytokines from anti-inflammatory T cells may contribute 
to hypothermia-induced suppression of the immune system 
[50,78]. Although the dampening of the immune response 
may be protective in some ways, this can also be detrimental 
as it increases the body’s susceptibility to infections such as 
pneumonia as evidenced by the ICTuS-L trial which showed a 
significant difference between the rates of pneumonia in the 
hypothermic versus normothermic group [63]. Contrary to this, 
a Cochrane review focusing on the effects of cooling therapy in 
ischaemic stroke has found no statistically significant difference 
in infection rates between the treatment and control groups [79]. 
Since sedatives, muscle relaxants and mechanical ventilation, 
administered as an adjunct alongside therapeutic hypothermia, 
could also increase the chance of infection [80-82], limiting the 
depth and duration of cooling may be one way of combatting 
the risks of infection due to lesser requirements for sedation 
and mechanical ventilation. However, this may also diminish the 
neuroprotective effects of therapeutic hypothermia. Hence, it is 
vital to find an optimal treatment regimen to establish balance 
between achieving neuroprotection and minimising the risk 
of infection. Another way to mitigate the risk of infection may 
involve the prophylactic use of antibiotics and early monitoring 
for potential signs of infection like fever or increased levels of 
C-reactive protein. Considering that, these may not be discernible 
in hypothermic patients, a daily blood screen cultures may be 
needed to check for bacteraemia. Bearing an increased risk of 
infection in mind, extra care should be taken at all times with 
catheter insertion and in preventing bedsores [20,83]. 

Electrolyte Disorders 
Whilst therapeutic hypothermia is associated with a decreased 
urine output in some studies, many other studies reveal a 
radically increased diuresis due to decreased solute reabsorption 
in the ascending limb of the loop of Henle [84,85]. Whilst there is 
no significant change in serum Na+ levels during hypothermia, the 
excretion of Mg2+, K+ and phosphate is markedly elevated to which 
intracellular sequestration of K+ may also contribute. Due to the 
anticipated depletion of these electrolytes during hypothermic 
treatment, some patients may be given supplements to maintain 
them in the normal range. This is of particular importance 
given that low levels of Mg2+ can exacerbate brain injury while 
low levels of K+ is implicated in cardiac arrhythmias. Indeed, 
polymorphic ventricular tachycardia has been closely associated 
with hypokalaemia in resuscitated cardiac arrest patients with 
ventricular fibrillation [17,86]. However, considering the risk of 

rebound hyperkalaemia during rewarming care must be taken 
while administering K+ supplementation [51]. 

Hyperglycaemia 
Hypothermia reduces insulin secretion from the pancreas and 
as a consequence render patients hyperglycaemic [87,88]. As 
hyperglycaemia is associated with increased rates of infection, 
renal failure and neuropathy, its control by exogenous insulin may 
be necessary. Most hypothermic patients require higher than 
the physiological levels of insulin in order to maintain glucose 
levels within normal range due to the insulin resistance that 
may develop during the treatment [89]. Even so, no significant 
differences have been observed in plasma glucose levels between 
hypothermic and normothermic rodents subjected to permanent 
MCAO or in hypothermic versus normothermic patients with 
traumatic brain injury [26,51]. 

Other Effects
Hypothermia can impair bowel function by promoting the delay 
of ileal and gastric emptying. Hence, enteral support should 
be delayed until gut motility returns back to normal [52,69]. 
Furthermore, as hypothermia is a depressant on organ physiology 
and function in general whilst also supressing the metabolism 
and excretion of multiple drugs, it makes logical sense that many 
pharmacological interventions will have their effects exaggerated 
during induced body cooling [85]. The impact of hypothermia 
on drug metabolism is variable and dependant on the route of 
elimination. In general the kinetics of most enzymatic pathways 
is slowed down during hypothermia. Consequently, Phase 1 
metabolism, the initial biotransformation of a drug, usually by 
CYP450 enzymes, and Phase 2 metabolism, the conjugation of 
the drug by one or more molecular groups in order for it to be 
excreted, are the two most likely phases of drug metabolism 
and elimination to be affected [90]. Many CYP450 enzymes have 
been shown to have their activity inhibited during hypothermia, 
with processes such as active secretion or absorption showing 
marked reductions in activity [91]. As therapeutic hypothermia 
reduces clearance of many drugs and alters their potency, dose 
adjustment is recommended [17]. 

Conclusion
Therapeutic hypothermia alone or in combination with 
mechanical or pharmacological thrombectomy has long been 
regarded as a promising therapeutic option for ischaemic stroke. 
Although evidence concerning the time, duration and depth 
of the cooling periods as well as the rewarming rate continue 
to accumulate, further evidence is desperately required to 
devise a standard protocol that maintains the balance between 
neurovascular homeostasis and complications. Further pre-
clinical and clinical trial studies are also needed to ascertain true 
value of this treatment in the settings of acute ischaemic stroke.
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